Researchers at University of California San Diego School of Medicine report that a first-in-human phase I clinical trial in which neural stem cells were transplanted into participants with chronic spinal cord injuries produced measurable improvement in three of four subjects, with no serious adverse effects.
To begin to understand the field of plasmonics, picture the rich colors of stained glass windows in Gothic cathedrals; or, the pixelation of a digital photo on a laptop screen. In some way, shape or form these are plasmons on display. Basically, plasmons are traveling waves of rippling electrons that can be excited in plasmas, metals or semiconductors. They lie at the heart of plasmonics. In such systems, plasmons bunch up and spread out as a group, enhancing and manipulating electromagnetic energy and concentrating optical energy beyond the diffraction limit of light. But much of this energy in common materials is quickly lost, or dissipated, as heat. And, while plasmons have found commercial applications in chemical sensors (e.g., common drug-store pregnancy tests), they have not been applied more widely or ambitiously because of high dissipation, which has frustrated scientists—until now.
Engineers at the University of California San Diego have developed tiny ultrasound-powered robots that can swim through blood, removing harmful bacteria along with the toxins they produce. These proof-of-concept nanorobots could one day offer a safe and efficient way to detoxify and decontaminate biological fluids.
The race is on between new antibiotics and drug-resistant bacteria—and scientists are challenged to keep up. By 2050, according to a Wellcome Trust study, deaths from deadly infections will be more common than cancer deaths. Scientists report that currently antimicrobial resistance causes 23,000 deaths annually in the U.S.; 700,000 deaths worldwide. Better methods to treat bacterial infections are urgently needed. So researchers, including a University of California San Diego professor, are gaining ground by demonstrating the first example of an effective gene therapy for deadly bacterial infections.
The headaches of heavy traffic may be universal, but University of California San Diego’s Ruth Williams works to ease the pain. The Department of Mathematics professor analyzes traffic congestion within the field of stochastic networks. This area of math describes real-world systems running at near-maximum capacity. It applies to things like the Internet when congested, assembly line glitches, customer service queues and freeways at rush hour. For this work, and for her many contributions to probability theory and collaborative research, Williams has been selected as a Corresponding Member of the Australian Academy of Science. The U.K.’s Professor Richard Ellis joins her as a new academy member.
UC San Diego School of Medicine researchers found that treating mice with a single spinal injection of a protein called AIBP — and thus switching “off” TLR4, a pro-inflammatory molecule — prevented and reversed inflammation and cellular events associated with pain processing. As reported May 29 by Cell Reports, the treatment alleviated chemotherapy pain in mice for two months with no side effects.