August 20, 2018
August 20, 2018 —
When it comes to fundamental physics, things can get spooky. At least that’s what Albert Einstein said when describing the phenomenon of quantum entanglement—the linkage of particles in such a way that measurements performed on one particle seem to affect the other, even when separated by great distances. “Spooky action at a distance” is how Einstein described what he couldn’t explain.
August 6, 2018
August 6, 2018 —
Early Earth was a hot, gaseous, dusty and dynamic planet with an atmosphere and an ocean. Then its surface cooled and stabilized enough for clouds, landmasses and early life to form about four billion years ago, during what’s called the isotopic age of rocks, or the Archean Period. Atmospheric chemical byproducts from that time traveled through the air and deposited inside the planet’s oldest rock, recording life’s earliest activities like photosynthesis and oxygen production.
Sulfur isotopes can serve as tracers of atmospheric oxygen and new data collected from the present-day atmosphere in China by an international team of researchers, led by the University of California San Diego, indicate remarkable similarity to the isotopic footprint found in ancient rocks. This opens up new interpretations of the Archean Period’s sulfur isotope sedimentary signature—a proxy for the origins and evolution of atmospheric oxygen and early life on Earth.
July 23, 2018
July 23, 2018 —
Like small-scale Legos clicking into place, nature autonomously puts together microscopic building blocks. Living systems are biochemical machines that excel at building and moving their parts. Just as machines need energy in some form to operate, living systems are energized by consuming “fuel”—substances or food—reliably. The human body, for example, contracts muscles by the motion of tiny nanomotors—molecular devices that convert energy at the nanoscale scale to generate movement at the macroscale. The ability to mimic nature’s self-assembly would revolutionize science’s approach to synthesizing materials that could heal, contract or reconfigure.
July 16, 2018
July 16, 2018 —
Currently, information-processing tools like computers and cell phones rely on electron charge to operate. A team of UC San Diego physicists, however, seek alternative systems of faster, more energy-efficient signal processing. They do this by using “excitons,” electrically neutral quasiparticles that exist in insulators, semiconductors and in some liquids. And their latest study of excitonic spin dynamics shows functional promise for our future devices.
July 10, 2018
July 10, 2018 —
The stuff the universe is made of. The origins of life. Dreams. Consciousness. Multiple universes. These are among the biggest questions in science. University of California San Diego Professor of Physics Kenneth Intriligator addresses challenging topics like these, and his theoretic efforts gained the attention of the Simons Foundation, which named him one of its 2018 Simons Investigators, announced in the July 10 edition of the “New York Times.”
July 9, 2018
July 9, 2018 —
Many insects and animals have special proteins that act like car antifreeze to prevent ice from forming and spreading in their bodies amidst harsh winter temperatures. Scientists know about these antifreeze proteins (AFPs), but not so much about the mechanisms that make them work. Chemistry researchers at the University of California San Diego and the University of Utah, however, share new cold facts about AFP function in their July 9 article published in the Proceedings of the National Academy of Sciences (PNAS). Their research results could impact a variety of industrial and natural processes, including cloud formation, as well as future scientific studies.
July 6, 2018
July 6, 2018 —
Ceramides—waxy, oily lipid molecules that affect biological function like insulin resistance, gene regulation and tumor suppression—could be applied to new cancer treatments…if only scientists could study them directly in living organisms. Tackling this task with a brand of chemistry that addresses biological challenges, University of California San Diego Professor Neal Devaraj produced research results that confront the limitations of studying ceramides.
June 27, 2018
June 27, 2018 —
Scientists have long pondered how non-living materials coalesced into the earliest life forms on Earth. Nearly 60 years ago Stanley Miller and Harold Urey, founding professors of the physical sciences at the University of California San Diego, established a tradition of working to answer questions about life’s molecular origins. Professor Neal Devaraj continues that UC San Diego legacy by using chemistry to solve questions in biology, while also developing new tools that uniquely perform tasks within living cells. For his inventive work, the Blavatnik Family Foundation and the New York Academy of Sciences have announced Devaraj as the 2018 Blavatnik National Laureate in Chemistry.
June 18, 2018
June 18, 2018 —
Human activities—from growing rice and burning coal or wood, to driving cars and testing nuclear missiles—have impacted the Earth’s atmosphere over time. Cleansing the Earth’s environment is of growing interest in the new era of humanity, unofficially called the Anthropocene epoch. To better understand the impact of the human biogeochemical footprint on Earth, scientists at the University of California San Diego are literally climbing mountains to study the planet’s sulfur cycle—an agent in cardiovascular fitness and other human health benefits and resources.
May 31, 2018
May 31, 2018 —
To begin to understand the field of plasmonics, picture the rich colors of stained glass windows in Gothic cathedrals; or, the pixelation of a digital photo on a laptop screen. In some way, shape or form these are plasmons on display. Basically, plasmons are traveling waves of rippling electrons that can be excited in plasmas, metals or semiconductors. They lie at the heart of plasmonics. In such systems, plasmons bunch up and spread out as a group, enhancing and manipulating electromagnetic energy and concentrating optical energy beyond the diffraction limit of light. But much of this energy in common materials is quickly lost, or dissipated, as heat. And, while plasmons have found commercial applications in chemical sensors (e.g., common drug-store pregnancy tests), they have not been applied more widely or ambitiously because of high dissipation, which has frustrated scientists—until now.